
.0A9629 AEH0 AUTICALPE EARC LABS MEL1OURNE (AUSTRALIA) F/G 12/1

Cb 79 R 8C Z MEAOO OF SOME ITERATION PROCEDURES FOP EXTERIOR--ETC(U)

U141-AIIFLE RL/-OT6 NL00



111111-15 _.4

RE11



ARL-SYS-NOTE-62 AR-001-597

4tAUSTRALIA I,

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
00 AERONAUTICAL RESEARCH LABORATORIES

0 MELBOURNE, VICTORIA

SYSTEMS NOTE 62

CONVERGENCE BEHAVIOUR OF SOME
ITERATION PROCEDURES FOR EXTERIOR POINT

METHOD OF CENTRES ALGORITHMS

by - -

RONALD B. ZMOOD 18

Approved for Public Release.

f ' " '1!:T STAT S NATO;',AL

'5tI.4 ! JC',Lr'RMATIOfN~ R"C
AU H .U E ,S'R\, C .E

, HEPRODIt;C AND SELL THIS REtoRT

. © COMMONWEALTH OF AUSTRALIA 1979

coY No 16 FEBRUARY 1979

S81 4 29 0



DEPART MENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

AERONAUTICAL RESEARCH LABORATORIES

SYSTEMS NOTE 62

By RONALD B. ZMOOD

ERRATA

In general for equations with limit -ishould read 1t-v



AR-001-597

DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

AERONAUTICAL RESEARCH LABORATORIES

SYSTEMS NOTE 62

CONVERGENCE MHAVOUR OF SOME
ITERATION PROCEDURES FOR EXTERIOR _OINT

METHOD OF CENTRES ALGORITHMS4

by

/Kj,) RONALD B./MOOD

SUMMA R Y
The convergence rate for a number of iterative procedures for the method of centres,

was studied in connection with the investigation of methods for extending the applicability
of flight directors. By the use of the Kuhn-Tucker conditions and the duality properties
for convex programming problems, it was shown that the augmented cost function, arising
in this method, has a second order zero at the optimum point. From this flows the results:
that the Staha and Morrison iteration procedures are linearly convergent: the tangent
iteration procedure is quadratically convergent; and two interpolation polynomial
iteration procedures proposed by the author to overcome the deficiencies of the tangent
method away from the optimum point are super-linearlh convergent and are thus worthY
of further investigation.

POSTAL ADDRESS: Chief Superintendent, Aeronautical Reaeerch Laboratories.

Box 4331, P.O., Melbourne. Victoria, 3001, Autralla.

;/~' j



DOCUMENT CONTROL DATA SHEET

Security classification of this page: Unclassified

1. Document Numbers 2. Security Classification
(a) AR Number: (a) Complete document:

AR-O01-597 Unclassified
(b) Document Series and Number: (b) Title in isolation:

Systems-Note-62 Unclassified
(c) Report Number: (c) Summary in isolation:

ARL-Sys-Note-62 Unclassified

3. Title: CONVERGENCE BEHAVIOUR OF SOME ITERATION PROCEDURES
FOR EXTERIOR POINT METHOD OF CENTRES ALGORITHMS

4. Personal Author(s): 5. Document Date:
Ronald B. Zmood February, 1979

6. Type of Report and Period Covered:

7. Corporate Author(s): 8. Reference Numbers
Aeronautical Research Laboratories (a) Task:

9. Cost Code: (b) Sponsoring Agency:
717900

10. Imprint: 11. Computer Program(s)
Aeronautical Research Laboratories, (Title(s) and language(s)):
Melbourne

12. Release Limitations (of the document):
Approved for Public Release

12-0. Overseas: I N.O. IP.R.[I I AI IBI I CI I D 1 E1
13. Announcement Limitations (of the information on this page): No limitation

14. Descriptors: 15. Cosati Codes:
Convergence Non-linear constraints 1202
Iterative methods Kuhn-Tucker conditions
Optimization Convex programming
Algorithms Duality theory

16. \ ABSTRACT
The convergence rate for a number of iterative procedures for the method of centres,

was studied in connection with the investigation of methods for extending the applicability
of flight directors. By the use of the Kuhn-Tucker conditions and the duality properties
for convex programming problems, it was shown that the augmented cost function.
arising in this method, has a second order zero at the optimum point. From this flows
the results: that the Staha and Morrison iteration procedures are linearly convergent;
the tangent iteration procedure is quadratically convergent; and two interpolation
polynomial iteration procedures proposed by the author to overcome the deficiencies of
the tangent method away from the optimum point are super-linearly convergent and are
thus worthy of further investigation.

\A



CONTENTS

Page No.

1. INTRODUCTION

2. PROBLEM DEFINITION AND PRELIMINARY RESULTS 1

3. PROPERTIES OF AUGMENTED COST FUNCTION 3

4. LOCAL CONVERGENCE BEHAVIOUR OF ITERATION ALGORITHMS 6

4.1 The Morrisom Algorithm 7

4.3 The Tagent Method 8

4.4 The Interpolatio. Method 9

5. CONCLUDING REMARKS Ii

REFERENCES

DISTRIBUTION

AvAtOt '



1. INTRODUCION

The range of applicability of flight directors to situations involving large manoeuvres and
disturbances is capable of being extended by the incorporation of predictive methods in digital
avionic and display systems. This involves the determination of optimal controls in the presence
of physical and operational constraints, and alternative numerical algorithms for this purpose
are being investigated. In this note the speed of convergence for the method of centres optimi-
zation algorithm, which can handle the above types of constraints, is examined to determine
its suitability for rapid computations.

The method of centres algorithm is a well established technique for finding the minimum
of a function of n variables subject to inequality constraints. Lootsmal distinguishes two classes
of such algorithms, namely: interior and exterior points methods. For the former methods
extensive theoretical and computational studies, of their convergence properties and rates of
convergence, have been made by Huard,2 Faure and Huard,3 Lootsma,3- 4 and Pironneau and
Polak.5 In particular Lootsma,1 and Pironneau and Polak 5 have shown that the algorithms
proposed by Huard are linearly convergent.

Exterior point methods, the subject of this report, were first proposed by Kowalik,8 and
have been studied both theoretically and computationally by Morrison, 6 Kowalik et al.7 and
Lootsma. 1,4 Numerical experience with a number of these methods has been variable, with
Lootsma reporting disappointing results for the algorithm considered in Reference 4, while
Staha and Himmelblau 9 reported very favourably on their application of Newton's method to
the exterior point method of centres. Lootsma10 studied the theoretical rates of convergence for
a number of exterior point algorithms including the one proposed by Morrison,6 the tangent
algorithm discussed by Kowalik et al.7 and the Newton method discussed by Staha. 9 He con-
cluded that the Morrison and Staha methods are linearly convergent while the tangent method
is super-linearly convergent. Numerical experience, however, has shown that Staha's method
usually converges more rapidly than the tangent method, which tends to overshoot the optimum
solution. This apparent paradox between the Staha and tangent methods is even more com-
pounded when it is noted that their iteration formulae only differ by a factor of one half.

In this report we investigate the convergence behaviour of the Morrison, tangent, and Staha
algorithms, as well as two interpolation polynomial algorithms proposed by the author. The
approach used, which differs from that of Lootsma, not only confirms his results for the Morrison
and Staha methods, but also gives further insight into the reason why the Staha algorithm is
only linearly convergent, yet the tangent algorithm is super-linearly convergent. In fact we are
able to demonstrate that the tangent algorithm is quadratically convergent as well as obtaining
an explicit formula for its asymptotic error constant. In addition we are able to show that one
of the proposed algorithms is almost quadratically convergent. This appears to confirm the
limited computational experience obtained to date which shows that its convergence rate for
test problems compares very favourably with the tangent method.

2. PROBLEM DEFINITION AND PRELIMINARY RESULTS

In this report we shall consider exterior point method of centres algorithms for solving the

following constrained minimization problem:

PROBLEM MP. Find a point . C where C -. R" Ifi(x) < 0, i I. ml such that

fi(.) - minfo(x). (2.1)
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We shall assume that the functions .fi(), i = 0, 1,..., m mapping R into R1 are twice con-
tinuously differentiable. The gradient and hessian of a function f, at x e Ro will be denoted by
A(R) and fig.-4) respectively. The gradient will be considered to be a row vector and will be
written as

i.(R) = .. (2.2)

while the kl'th element of the hessian will be written as

=2f(R), k, I = I . n. (2.3)

The set C, defined above, will be referred to as the constraint set and it will be assumed
that it is compact with a non-empty interior. Any point x e C will be referred to as an admissible
solution of problem MP. From the compactness assumption on C and the fact thatf 0 is continuous
it follows that an R E C exists satisfying (2.1).

Problem MP with the additional assumption that the functions fi(.), i = 0, 1, ... m are
convex on R0, will be termed a convex programming problem.

In considering the method of centres we introduce the augmented cost function Q,(x),
dependant on the parameter t e R1 and the variable x e R9, which is defined in terms of the
functions fi(x), i = 0, 1,. . ., m given in problem MP above. This function is defined as

Qg(x) = [max(0,fo(x) - f)2 + I [max(O,fi(x))12. (2.4)
I

For any t we denote the point x e R" minimizing Qt(x) as x(t). The significance of this definition
of Qg(x) follows from Lootsma's' result that, under appropriate assumptions, if a sequence of
parameters t,, i = 1, 2,... converges to 9 =f(g) then the corresponding sequence of points
x(ts) e Rx, i = 1, 2, ... converges to R. In the sequel we will study the rate of convergence of
several algorithms for adjusting the parameter t so that the sequence of points {x(tt)} generated
by it approaches 2 from the exterior of the constraint set C.

Before proceeding we state some basic results which will be used in later sections.

THEOREM 2.1. Supposef,(.)E C'(R"; RI), i = 0, I, .. ., m and that problem MP is a convex
programming problem. In addition assume that the interior of the constraint set C is non-empty.
Then an admissible solution 2 is a minimum solution of problem MP if and only if there exists
a 1 e Rm such that

fi() 0, (2.5)

0,_ 0, (2.6)

aff() = 0, (2.7)
for i =I...m, and

foz0() + I ffiz(.) = 0. (2.8)
I -I

Proof. See Lootsma (Ref. I, p. 25).

DEFINITION 2.1. A point (2, 0) e R" x R" is termed a Kuhn-Tucker point of problem MP
if it satisfies the conditions (2.5) to (2.8).
We introduce the following notation: Let 1(9) = {i I fi(R) = 0, i i ..., m} denote the set
of active constraints. The derivative of the left hand side of (2.8) will be denoted by

D'(9, 0) = fozz(f) + 2 ajifi(2). (2.9)
i- I

Following Lootsma we give the following definition:

DEFINITION 2.2. A Kuhn-Tucker point (2, 0) of problem MP satisfies the Jacobian Unique-
ness Condition if:

(a) rg > 0 for i c l(g),
(b) f4(R), i e 1(1) are linearly independent, and
(c) for every non-zero y e R", fix(R)y = 0, i e 1(9) implies yTD2(9, Q)y > 0.
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THEOREM 2.2. Suppose f(-) e C2(R"; RI), i = 0, 1, . ., m and there exists a Kuhn-Tucker
point (2, a) satisfying the Jacobian uniqueness condition then the point i is an isolated local
minimum of problem MP and the vector fi is uniquely determined.

Proof. See Lootsma (Reference 1, p. 17).
We now introduce the dual problem to problem MP.

PROBLEM DP. Supposefi(.) e C'(Ru; RI), i = 0, 1, . m. Find 2 and 42 e ROD such that
o(ax+ = mX + ) utJi(x) (2.10)

where

=21)e {(x, U)I ER , UE+ Z O. 0 , .- 0, . .m

We define

Ax, u) =fo(x) + utf(x) (2.11)1=1

Wolfe11 has proved the following result:

THEOREM 2.3. Supposei(-) E CI(Rs; RI), i - 0, 1,.. ., m and that problem MP is a convex
programming problem. If 2 is a minimum of problem MP and satisfies a suitable constraint
qualification condition then there exists a i e RI' such that (Q, ii) satisfies the dual problem
and also

fA(M) = 0Q<, D). (2.12)
Proof. See Mangasarin.16

The reader is referred to Mangasarin (Ref. 16, p. 105) for a discussion of suitable constraint
qualification conditions.

3. PROPERTIES OF AUGMENTED COST FUNCTION

In this section we examine some of the properties of the augmented cost function Qt(x).
Under the assumptions given in Section 2, and including the assumption that problem

MP is a convex programming problem, Lootsmal has shown that Qt(x) has the following
properties:

(a) for every t there exists an x(t) e Rn minimizing Q(x),
(b) if I < P then I <fo(x(t)) < P and Q(x(t)) > 0, and
(c) if I > P then Q,(x(t)) = 0.
In addition we need the following results shown by Lootsma.

THEOREM 3.1. Supposef(.) e CI(Rn; RI), i = 0, I. m and that problem MP is a convex
programming problem. Then for every t < f an admissible solution of problem DP is given
by (x(t), u(1)) where x(t) minimizes Qt(x) over R" and u(t) is given by

max [O,fi(x(t ))] -I m 31
ui(t) = ma to , I .... t (3.1)

fo(x(,)) - I

Proof. This may be shown by direct substitution.

THEOREM 3.2. Suppose fi(.) e C2(R'; RI), i = 0, 1, .... m, problem MP is a convex pro-
gramming problem and there exists a Kuhn-Tucker point (Q, f) which satisfies the Jacobian
uniqueness condition, then

lim (x(), U(t)) = (, ii). (3.2)
t<f

t- V

Proof. This may be shown by making the obvious modifications to the proof given in Lootsma
(Ref. I, p. 38).

LEMMA 3.1. SupposeJi(.) E CS(R1: RI), i 0 0, I, .... m, problem MP is a convex program-
ming problem and these exists a Kuhn-Tucker point .P = (2, a) e RO x R- which satisfies the
Jacobian uniqueness condition, then for t 4

y4) = .i - F4.i; f)-1 FAY.. 1Xt - ,) + 01(t - )], (3.3)

k _ _ . . .. .



where

u mfa(x) -a x

F(y; t) fo(x) - t (3.4)

umfm(X) - max (o-f(X))f(x)
fo(x) - I

and At) = (x(t), u(t)).

Proof To investigate the behaviour of (x(t), u(t)) for I in a neighbourhood of V, we note from
the definition of x(t) and (2.4) that for t <

m

fo.(x(t))[max (O,fo(x(t)) - t)] + jfi.(x(t))[max (O,fi(x(t)))] = 0. (3.5)

From theorem 3.1 this is equivalent to
'ft=

foz(x(I)) + I uI)f(x(t)) 0 0, (3.6)

max [O,A(X(I))f 0 I(3

u(t~o(x(t)) -- fo(xQ=)) t , i .. m, (3.7)

for t < P. Equations (3.6) and (3.7) implicitly define (x(t), u(t)) in terms of the parameter t.
Without loss of generality assume that the set of active constraints I(9) = I, .. .

From theorem 2.1 and the Jacobian uniqueness conditions it follows that

nOi(9)=0and ih > 0 for i=1. , (3.8)
and

fi(9) <0and Ot =0 for i= + .... (3.9)

The continuity of the functions f(x), i I,. . ., m, and the results of theorems 3.1 and 3.2
lead to the conclusion that there exists an c > 0 so that for t e [P - e, F),

fi(x(t)) > 0 and ul(t) > 0 for i = I, . .. , , (3.10)
and

fi(x(t)) < 0 and ul(t) = 0 for i -t a + ! .. m. (3.11)

From (3.4) it can be seen that F(., i; f) = 0, and also that the matrix partial derivative of F
with respect to y is

- -- -- -- -- -- - -- -- -- ----- -- - - - - - -

2(fo - t)f fi. -ffoZI ft(fo - t)2 -.Q
zxI2(fo -t)If - ffo I

Fy; tx)00 -1)2 1 (3.12)
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It follows from the argument given by Lootsma (Ref. 1; p. 17) that the matrix FY(f; P) is
non-singular. By the implicit function theorem"2 there exists a neighbourhood, N, of 0 and a
unique function yt) E C2(N; R-* -) such that yV) = y, and F(yt); ) =0 for I N.

From Taylor's theorem and noting that

Fy(9;P) dy + Ft(i; 0)=0, (3.13)
dt

we have
At) = 9 + F1(9, )-Fj(9; P)t - F) + O(t - P)2]. (3.14)

LEMMA 3.2. Suppose .i() e C2(RR; RI), i = 0, I. m, problem MP is a convex program-
ming problem and there exists a Kuhn-Tucker point (i, i) which satisfies the Jacobian unique-
ness condition, then

dR

dtIo ([)2-) +
-n rI I +)

where

= y./ and the ,, x(mA-n) matrix E, and the mx×(mA-n) matrix E2 are defined as
i E+ #)

El = [:i 0] and E2 = [0 1],
respectively.

Proof. From the assumptions given above it follows that (3.10) and (3.11) hold for iE I(Et)
and i 0 i(Q), respectively.

Considering the expression
fo(x()) + z fifi(x(t)), (3.15)

iE I(.)

and expanding it into a Taylor series we have

fo(x(t)) + I ifif(x(t)) =fo() + 1 Offi(.0)+ [fox(R) + Z fi fa(g)](x() .) 4
i EI(x) Ji 1(1) 1i E(k) I

+ j(x(t) - R)TD2(, aXx( ) - g) + V(g, x(t))IIx() - .jfl2, (3.16)

where y(, x(t)) - 0 as x(t) -- >X, and II " denotes the Euclidean norm on RO. Consequently
from (3.10), (3.11), equation (3.16) and theorems 2.1 and 3.1 we have

fo(x()) + (fo(x(t)) -: ) z aui(t) =
i C I( )

=fo(t) + I(x(t) - if)D2(.,, fi(x(t) - k) + y(, x(t)) I xQ) - 9 1I. (3.17)

Defining P(t) = R iui(t), (3.17) becomes

fo(x(t)) =fo() I AO ( - 0) - 2(+ - f(t)(
x ( t ) --)D 2(f. iXxQ) - R) i

f( t x(t ))
+ I(91 X(t) JJx(t) - R112. 4 .8

+ P(t)

Let us define the n x(n f m) matrix El and the mx(n+m) matrix E2 as

El = [I 01 and E2 = [0 1!],

respectively. From lemma 3.1 we have

, X() - . = -EF-I(Y; 9) Ft(; P)Q - j) + O[(t - 9)2j, (3.19)

. ... ..... .. . , . . ... .......... aS



so that

fo(xt)) =fo(f) + ( + i4 ) 
+

+ (EiF1 '(.P; P) Ft(f; P))TD2(-t, fiXE 1Fy- 1(; P) F(~f; )Xi - P)2 + [( p)3.
2(1 + fl(t))

(3.20)
Differentiating (3.20) with respect to t, we find

dI
= -, and (3.21)

d2  2aTE2F-l(fi; ) Ft(ji; ) +
d12f0(x(t )) (1 + P)2

+ ( (E i Fy 1(i ; p) Fi(j3; j))TD2(j, iiXEFy-'(f; P) Ft(f; 0)). (3.22)
(1 +0l

THEOREM 3.3. Suppose A(.) E C2 (R"; RI), i = 0, 1, .. m, problem MP is a convex pro-
gramming problem, and there exists a Kuhn-Tucker point (9, i) which satisfies the Jacobian
uniqueness conditions. Then Qt(x(t)) has a second order zero at t = P.

Proof. Considering Qt(x(t)) we find

d /dx m dx
dQt(x(t)) = 2 max (O,fo(x(t)) - 1)d fo(x(t)) - I + 2 E max [Ofi(x(t))] f- .z( x ( t )).dt \(di di

(3.23)
Since x(t) is a stationary point of Qt(x(t)) we have

max (O,fo(x(t)) - t)fo(x(t)) + X, max [0,fi(x(t))Jfi.(x(t)) = 0, (3.24)
i 1

so that

d dQtxt)- -2 max (0, fo(xQ) ) - t). (3.25)

Now from theorem 3.2 as t -> i (I < P) then x(t) converges to 9, so that

d
dQt(x(t)) - 0.

From (3.25) we have for t - V that

d Qt(x(t)) -2(fo(x(t)) - t). (3.26)

Thus
d2 d

=lQ~() -2(jdfo(x(t)) ,., -1), (3.27)

2

Since/ > 0 it follows that the right hand side of (3.27) is always non-zero, and as a consequence
Qt(x(t)) has a second order zero at t 1 P.

4. LOCAL CONVERGENCE BEHAVIOUR OF ITERATION ALGORITHMS

In this section we examine the local rate of convergence for a number of iterative algorithms
which adjust the parameter t of function Qt(x) so that the sequence if, i = 1, 2.... converges
to 9, and the corresponding sequence x(t) converges to 9, the optimum solution of problem MP.

Because the function Qt(x(t)) has the property,

J 0 for allI >( ,
QI(x(t )) 44. o

> 0 for allt t--
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it has a non-unique minimum. Consequently procedures for generating the sequence it, i = 1, 2....
must begin with t1 i. It is possible to demonstrate' 0 that, under appropriate assumptions,
the sequences ti, i = I, 2 .... generated by the procedures discussed below are monotonic
increasing, satisfy the inequalities

~ i~,(4.2)
and converge to i .

As a measure of the rate of convergence we use the definition of the order of an iteration
algorithm,

G,-.I --0(ti), i 1 ,2, ... ... 3

due to Traub,' 3 where 0(t) will be termed the iteration function.

DEFINITION 4.1. If ti, i 1, 2. . . is a sequence converging to T, generated by (4.3), and
there exists a p > 0 and a non zero constant C such that

C (4.4)

then p and C are termed the order of the iteration function and the asymptotic error constant
respectively.

The following theorem proved in Traub'3 will be used in the sequel.

THEOREM 4.1. If there exists a neighbourhood, N, of P such that 4() c C"(N; RI) then 0. is
of order p if and only if

0(i=) -, 1j)(,(i ) 0, j - I .. , p - I and 01 P(i) # 0.

In addition the asymptotic error constant is given by

- (4.5)

4.1 The Morrison Algorithm

In reference 6, Morrison proposed the iteration function

0(t) = t - \ Q,(x(t)) (4.6)

for adjusting the parameter t in the method of centres. It will be observed that 0i() i .Also
from (4.6), theorem 3.1 and lemma 3.2, we find that

'b I * )JI(4.7)

where ,] is defined in lemma 3.2. Providing the set of active constraints 1(f) is non-empty it
follows from theorem 4.1 that the Morrison algorithm has order p 1 1, and so is lineary
convergent. Furthermore the asymptotic error constant is given by (4.7). These results concur
with those derived by Lootsma' 0 by different means.

In the case where 1(X) =. q0, that is where problem MP has an unconstrained minimum
in C, the method of centres using the Morrison algorithm converges in one step.

4.2 The Staha Algorithm

Stahal 4 considered the application of the Newton-Raphson root finding procedure to the
method of centres. In this case the iteration function is

Qt(x(t ))
d1QW) (4.8)

(it
which from (3.26) becomes

21. Q1(x(t)) (4.9)
fo (t)) t'

7



Since Qt(x(t)) has a second order zero at I= it follows from Traub (Ref. 13, p. 25) that
(4.9) is only linearly convergent. Because of the insight gained into the operation of the tangent
method we propose to show this result for a slightly more general case.

Supposing that Qe(x(t)) has an m'th order zero, where m > I, at t = P, we can write

Qt(x(t)) = ( - )mg(t) (4.10)

where it is assumed that g(f) A 0. From (4.9) observe that O(P) P. By direct differentiation
of (4.8) and (4.10) and appropriate substitutions we find that

.I.(t~() I __dtt(__t)) (t i;)mg(t)( - p)m- 2[rn(m -J )g(t) + ...

C dd x (t Q )2m-2[mg(t)_ . (4.11)

and since mi 2 this expression simplifies to

* M(1() = r , (4.12)i m

at t= P. Consequently by Theorem 4.1, we conclude that (4.9) is linearly convergent with an
asymptotic error constant of 1.

A comparison of (4.11) and (4.15) gives some insight into the reason why the tangent
method, discussed in the next section, is quadratically convergent.

4.. The Tangent Method

The tangent method was first considered by Kowalik et al.,7 following a brief remark by
Morrison6 where he deduced its form on the basis of geometrical arguments. In this case the
iteration function is given by

Or) t Q(xt)) (4.13)
f(x(t)) - t

and only differs from the Newton formula (4.9) by a factor of 1. Lootsma1 ° has observed that
(4.13) is super-linearly convergent.

We treat the general case of Qt(x(t)) having an m'th order zero at t P, where mi > I.
Referring to equation (4.8), suppose that the second term is multiplied by m, so that the new
iteration function is

Q00x~))

IdQt(x(t )) (.4

In this case it is easy to see O(i) = , and by analogy with (4.11) it follows that

[Qt"')(x(f))]V ()mg(t)(t - f,)m 2[M(m - J)g(t) . (4.15)b~)(t : --m~o~z~~t)]2, .  .. .. r m(I - f)2 2- [mg(t) + ..]2(.5

Consequently,
in- I

= I - n m. --0, (4.16)

for every m > 1, and in addition
d3
dt0Qt(x(t)) 0, (4.17)

d2dI O
where dt 2Q(x(t)) is given by (3.27), and

t S
dt3Q(x()) = 2d2 fo(x(t)) " (4.18)

with the derivative on the right hand side being given in lemma 3.2.



Recalling, Qt(x(t)) has a second order zero at t = P, it follows from theorem 4.1 that (4.13)
is quadratically convergent, and the asymptotic error coefficient is given by 4u2(0)/2.

From the above analysis we are able to draw slightly stronger conclusions than Lootsma' 0 ;
namely that the tangent method is quadratically convergent. In addition we can see that in the
more general case where Qt(x(t)) has an arbitrary m'th order zero at I = V, the more general
algorithm (4.14) is always quadratically convergent. The tangent method can be viewed as an
application of the generalized Newton formula (4.14) whose discovcry, together with its unique
property, Traub 13 attributes to Schroder, who reported it about 1870.

4.4 The Interpolation Polynomial Method

Numerical experience 0 with the tangent method has shown that it tends to overshoot the
minimum value P quite readily for some problems, which causes the algorithm to fail unless
some ad hoc procedure such as reverting to the Morrison algorithm is used. This has led the
author to formulate further super-linearly convergent methods which may have more stable
convergence behaviour in a finite neighbourhood of the minimum point V.

We now show that algorithms based on the quadratic Newton interpolation formula are
super-linearly convergent. Only an outline, which is sufficient for our purposes, of the algorithms
will be given. A detailed discussion, including a consideration of suitable starting procedures,
will be the subject of a further report.

To facilitate the discussion the following notation is introduced. The function S(t) is defined
as S(t) = VQt(x(t)) for all real values of t. In addition supposing that t = t we define Si = S(t)
and Q, = Qt(x(t)). The quadratic Newton interpolation polynomial for the function S(t) at
the points If, t-, ti-2 with corresponding function values Si, Si-1, S-2 is given by

PsWt = Si + (I - tiS(ti, It -) -1 (1 - Ii)(t - It -)S(h, tt -1,tt -2), (4.19)

where the divided difference operators are defined by

Si- S1-1

SQt, t, ) Si - , and (4.20)It - I( I

S(ti, It- 1) - S(ti 1, It -2)
Si, /(-I, ti .,) (4.21)

t - t-2

The polynomial PQ(t) is defined in a similar manner using the points ti I-1, 1(-2 and the
function values Qi, Qf-1, Qf-2.

Algorithm A

Step 0. Select 1o, 11, t2 such that to -. t - 12 i, and set i = 2.
Step I. Compute the solutions S, j given by

Si j 1  min S(tj j), j = 0, 1, 2. (4.22)
x R-

Step 2. Find tAt, where

tsf t f I(I-~ i (4.23)2 2S(ti, t- 1, t- 2)(

Step 3. If Ps(tM) > 0 set ti - = tm.
If Ps(tm) < 0 then set

- tM2 
- (Si - S( 1, t 4)t' + S(th. l1-i 11-2)t( It 1) (4.24)h~t : tm--S(If, Itf 1,th 2) (.4

Step 4. If Sj+1 = 0 set .R = .(t+i) and stop: otherwise increment parameter i and return to
step I.

Algorithm B

This is essentially the same as algorithm A excepting that function Qt(x(t)) replaces S(t)
and polynomial PQ(t) replaces Ps(t).

!'9



Of course the iteration function for each of these algorithms is no longer a simple expression.
However it should be observed that in a sufficiently small neighbourhood of P, the function
Qg(x(t)) can be written as

Qt(x(t)) pI (t - )2 + O[(t - p)
3 . (4.25)

Consequently Q(t, ti-1, if 2) > 0 which implies that tm is the minimum of a quadratic poly-
nomial. A similar argument applies for function S(t). In addition the following lemma shows
that in a sufficiently small neighbourhood of P, the polynomial Ps(t) (or PQ(t)) has a real zero
for I < P, so that for this case the iteration function, which will be denoted by #s(t) QQ)),
is given by (4.24).

LEMMA 4.1. For a sufficiently small c > 0 suppose S13)(t) [or Qt31
3 (x(i))] is continuous and

non-zero on the interval (P - E, P). Let the points ti 2,, it 1, tf c (P - -, f) satisfy the conditions
t1-2 < t- < It < P. if S13)(p) _> k > 0, (Q. 3)(..) > k > 0), then Pst) (PQ )) has a real root
ti,, such that tf : til -< i, so that the sequence if, i I, 2, . . is monotone increasing.

Proof Since S(3)(p) >_ k > 0 it follows from continuity that there exists an ' > 0 such that
SM3)(t) > 0 for I E (P - e, P). We take tI 2, tj-1, t(E (f - E, i). The error equation for the inter-
polation polynomial Ps(t) is given by Reference 15,

2
Ps~t) S '3i ( - t)) 1j

PN() S( 3!( - tj), (4.26)
j 0

where 6(t) lies in the interval (P - e, i). Consequently
2

Ps(Q) - S) 3 )(( ()) - 1, (4.27)
j 0

and from the result that S131(t) > 0, we have Ps(f) 0 0. In addition from property (b) in
Section 3 we see that Psi(t) > 0. From the continuity of Ps(t) it follows that it possesses a
real zero i+, in the interval it < ti+, < f, and that the sequence ti, i 1, 2 .... is monotone
increasing.

THEOREM 4.2. Suppose fg(-) E C 2(Rn; RI), i -0, I, ... , m, problem MP is a convex pro-
gramming problem, and there exists a Kuhn-Tucker point (R, fi) which satisfies the Jacobian
uniqueness conditions. In addition, for Algorithms A and B suppose that SIW1(f) > k > 0, and

Qtl3l(X(t)) k > 0 respectively. Then the iteration function 0s(t) has an order p _ 1-84

with an approximate asymptotic error coefficient

I S3) (P)-.42

3! s-)(i)J

and the iteration function OQ(t) has an order p 2 126, with an approximate asymptotic error
coefficient

S 0*26

1Q,13
1(X(t))

3 Qf I I f J

Proof We restrict consideration to Algorithm A, as the proof for Algorithm B follows along
analogous lines.

From lemma 4,1 it follows that in a sufficiently small neighbourhood of f the sequence of
parameters t , i 1 1, 2 .... are determined by (4.24), which gives a root of the polynomial P(t).
In addition from theorem 3.3 and the definition of S(t) we note that S(t) has a zero of multiplicity
one at P. Traub (Ref. 13, Theorem 7.5) has shown that the order, p, of such an algorithm is
given by the unique real positive root of

13 1 t" J-t j ) 0, (4.28)
-m 0

l0
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and the asymptotic error coefficient is

1 . " '( _ n

where m is the multiplicity of the zero of S()at i. In this case rn I, and consequentl. the
order p ! 1.84.

5. CONCLUDING REMARKS

In this report the convergence of a number of iterative procedures for method of centres
algorithms has been investigated. The tangent method, which was previously known ito be
super-linearly convergent, has been shown to be quadratically convergent, and the known
results for the Staha and Morrison methods were proved as an easy consequence of the present
approach. In addition, the rate of convergence for two quadratic interpolation polynomial
methods developed by the author was studied. It was shown that both methots are super-

linearly convergent, with Algorithm A, in which the function Qx(1)) is transformed into a
function having a simple zero, being almost quadratically convergent. Limited numerical
experience with Algorithm B. where the function Q(x(t)) is interpolated directly, has shhown
it to perform very favourably in comparison with the tangent method. It is proposed to extend
these comparisons in the light of the above theoretical results.

The key to the main results obtained in this work has been the demonstration that the
function Qj(x(t)) has a zero of multiplicity two at the point t - i . While Qt(x) has the special
form given by (2.4), it appears that similar results concerning the multiplicity of the zero of
Qt(x(t)) can be obtained for a generalization of (2.4), provided, suitable differentiability
assumptions are made.

Apart from the concrete results obtained above, the insight gained about the analytic
properties of Qt(x(t)) leads us to speculate on suitable alternative algorithms for finding the
zeros of this function. Such methods as inverse interpolation and Halley's method, 3 as well
as other methods of transforming Qt(x(t)) into a function having a zero of multiplicity one are
worthy of further consideration.

!I
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